Reg.No.:	
----------	--

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN [AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY. CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 8007

B.E. / B.Tech. DEGREE SUPPLEMENTARY EXAMINATIONS - FEB. / MAR.2020

Third Semester

Electrical and Electronics Engineering U15EE302 – ELECTROMAGNETIC FIELD

(Regulation 2015)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

PART - A

 $(10 \times 2 = 20 \text{ Marks})$

- 1. What is physical significance of divergence of D.
- 2. State Stoke's theorem.
- 3. State Gauss law for electric fields.
- 4. Give the relationship between potential gradient and electric field.
- 5. State Biot Savarts law.
- 6. State Ampere circuital law.
- 7. Define self inductance.
- 8. Distinguish between solenoid and toroid.
- 9. State Poynting Theorem.
- 10. Mention the properties of uniform plane wave.

PART - B

 $(5 \times 13 = 65 \text{ Marks})$

- 11. a) i. Transform the given vector $A = 4a_x 2a_y + 3a_z$ at P(x = +2, y = +3, z = 4) to spherical coordinates. Also prove Divergence and Stoke's Theorem. (6)
 - ii. Verify the divergence theorem for the following case $A = xy^2a_x + y^3a_y + y^2za_z \text{ and the surface is the cuboid defined}$ by 0 < x < 1, 0 < y < 1, 0 < z < 1. (7)

(OR)

- b) Evaluate the line integral $I=\int_{\varepsilon} a.dr$, where a=(x+y)i+(y j x)j, along each of the paths in the xy-plane shown in the figure 1 below, namely,
 - i. The parabola $y^2 = x$ from (1, 1) to (4, 2), (4)
 - ii. The curve $x = 2u^2 + u + 1$, $y = 1 + u^2$ from (1, 1) to (4, 2) (4)
 - iii. The line y = 1 from (1, 1) to (4, 1), followed by the line y = x from (4, 1) to (4, 2). (5)

12. a) Evaluate both sides of the divergence theorem for the field $D = (2xya_x + x^2a_y) C/m^2$ and the rectangular parallelepiped formed by the planes x = 0 and 1, y = 0 and 2 and z = 0 and 3.

(OR)

b) State gauss law for the electric and magnetic fields. Derive its integral and differential forms. Make at least two conclusions. And also write a short note on Coulomb's Law.

13. a) Illustrate Biot-Savart Law and derive the calculation of magnetic field for simple coil configurations and state ampere's Law.

(OR)

- b) A air core toroid has a mean radius of 40mm and is wound with 4000 turns of wire. The circular cross- section of the toroid has a radius of 4mm. A current of 10 A is passed in the wire. Find the inductance and the energy stored.
- 14. a) An air coaxial transmission line has a solid inner conductor of radius 'a' and a very thin outer conductor of inner radius 'b'.

 Determine the inductance per unit length of the line.

(OR)

- b) An inductor of 3 henries and resistance 60hms is connected to the terminals of a battery of emf, 12volts and of negligible internal resistance. Calculate
 - i. The initial rate of increase of current in the circuit,
 - ii. The rate of increase of current at the instant when the current in the circuit is lampere.
- 15. a) State Poynting's theorem and relevant factors with proof and explain its physical significance.

(OR)

b) Evaluate the wave equation in 1-Dimension and find the solution of the wave equation and mention the expression for the total current density.

PART - C

 $(1 \times 15 = 15 \text{ Marks})$

16. a) Write down Maxwell's Equations in their general point form. Derive the corresponding equations for fields varying harmonically with time.

(OR)

b) Derive the 1-dimensional (1-D) Wave equations with suitable examples. Find the skin depth at a frequency of 2 MHz in Aluminum where $\sigma = 38.2$ M s/m and $\mu_r = 1$.